Sequential dimensionality reduction for extracting localized features
نویسندگان
چکیده
منابع مشابه
Sequential dimensionality reduction for extracting localized features
Linear dimensionality reduction techniques are powerful tools for image analysis as they allow the identification of important features in a data set. In particular, nonnegative matrix factorization (NMF) has become very popular as it is able to extract sparse, localized and easily interpretable features by imposing an additive combination of nonnegative basis elements. Nonnegative matrix under...
متن کاملOptimally Extracting Discriminative Disjunctive Features for Dimensionality Reduction
Dimension Reduction is one popular approach to tackle large and redundant feature spaces as seen in most practical problems, either by selecting a subset of features or by projecting the features onto a smaller space. Most of these approaches suffer from the drawback that the dimensionality reduction objective and the objective for classifier training are decoupled. Recently, there have been so...
متن کاملSupervised dimensionality reduction via sequential semidefinite programming
Many dimensionality reduction problems end up with a trace quotient formulation. Since it is difficult to directly solve the trace quotient problem, traditionally the trace quotient cost function is replaced by an approximation such that generalized eigenvalue decomposition can be applied. In contrast, we directly optimize the trace quotient in this work. It is reformulated as a quasi-linear se...
متن کاملDimensionality Reduction Through Unsupervised Features Selection
As the storage technologies evolve, the amount of available data explodes in both dimensions: samples number and input space dimension. Therefore, one needs dimension reduction techniques to explore and to analyse his huge data sets. Many features selection approaches have been proposed for the supervised learning context, but only few techniques are available to address this issue in the unsup...
متن کاملDimensionality Reduction of Visual Features for Efficient Retrieval and Classification
Visual retrieval and classification are of growing importance for a number of applications, including surveillance, automotive, as well as web and mobile search. To facilitate these processes, features are often computed from images to extract discriminative aspects of the scene, such as structure, texture or color information. Ideally, these features would be robust to changes in perspective, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pattern Recognition
سال: 2017
ISSN: 0031-3203
DOI: 10.1016/j.patcog.2016.09.006